MULTILINEAR REGRESSION

- 1. An experimenter wants to study a system which depends on one single natural variable ξ_1 . For this variable, he defines m=6 different levels $\xi_{1,1}=10,\ldots,\xi_{6,1}=60$ and for each of the $\xi_{1,i}$ he obtains $n_i=3$ observations $y_{i,1},\ldots,y_{i,3}$ for the response y. The data are in file reglin.dat. The experimenter wants to fit these data with the following linear model $y=a_0+a_1\xi_1+\varepsilon$.
 - What are the value of k and p? What do you choose for x_1 ?
 - Compute matrix X and vector \mathbf{y} .
 - Compute matrices C and H.
 - Compute $\hat{\bf a} = (\hat{a}_0, \hat{a}_1)$.
 - Compute SSE, SSR, SST, $MSE = \widehat{\sigma^2}$
 - ullet Is there a linear relationship between the response y and at least one regression variable?
 - Test $H_0: a_j = 0$ versus $H_1: a_j \neq 0$ for j = 0, 1.
 - Compute confidence intervals $\{(a_j)_L, (a_j)_U\}$ for j = 0, 1.
 - Compute R^2 , R_a^2 , the residual vectors **d**, **r**, and the Cook distance vector D.
 - Compute SSLOF and $SSPE = \widehat{\sigma^2}$. Is the regression model $y = a_0 + a_1 \xi_1 + \varepsilon$ valid?
 - Plot data, the regression curve and the two confidence interval curves.
- 2. Now the experimenter wants to fit the same data with the following model $y = a_0 + a_1 \ln(\xi_1)/\xi_1 + \varepsilon$
 - \bullet Compute matrix X and vector \mathbf{y} .
 - Compute matrices C and H.
 - Compute $\hat{\bf a} = (\hat{a}_0, \hat{a}_1)$.
 - Compute SSE, SSR, SST, $MSE = \widehat{\sigma^2}$
 - Is there a linear relationship between the response y and at least one regression variable?
 - Test $H_0: a_j = 0$ versus $H_1: a_j \neq 0$ for j = 0, 1.
 - Compute confidence intervals $\{(a_j)_L, (a_j)_U\}$ for j = 0, 1.
 - Compute R^2 , R_a^2 , the residual vectors **d**, **r**, and the Cook distance vector D.

- Compute SSLOF and $SSPE = \widehat{\sigma^2}$. Is the regression model $y = a_0 + a_1 \ln(\xi_1)/\xi_1 + \varepsilon$ valid?
- Plot data, the regression curve and the two confidence interval curves.
- 3. An experimenter wants to study a system which depends on two single natural variables ξ_1 and ξ_2 . For these variables, he defines m=9 different levels $\{(10,30),(15,30),\ldots,(20,40)\}$, and for each of them he obtains $n_i=2$ observations for the response y. The data are in file regmlin.dat. The experimenter wants to fit these data with the following model $y=a_0+a_1\xi_1+a_2\xi_2+a_3\xi_1^2+a_4\xi_2^2+a_5\xi_1\xi_2+\varepsilon$.
 - What are the value of k and p? What do you choose for x_1, \ldots, x_5 ?
 - \bullet Compute matrix X and vector \mathbf{y} .
 - \bullet Compute matrices C and H.
 - Compute **â**.
 - Compute SSE, SSR, SST, $MSE = \widehat{\sigma^2}$
 - ullet Is there a linear relationship between the response y and at least one regression variable?
 - Test $H_0: a_j = 0$ versus $H_1: a_j \neq 0$ for j = 0, ..., 5.
 - Compute confidence intervals $\{(a_j)_L, (a_j)_U\}$ for $j = 0, \ldots, 5$.
 - Compute R^2 , R_a^2 , the residual vectors \mathbf{d} , \mathbf{r} , and the Cook distance vector D.
 - Compute SSLOF and $SSPE = \widehat{\sigma^2}$. Is the quadratic model valid?